

IDT Sensors Presentation

Oct 2018

Analog Mixed Signal Systems

IDT Sensors

- Best in class signal conditioning ICs (ASSPs and ASICs) for automotive and industrial sensor markets
- Select market solutions for integrated sensor products (Environmental and Medical)
- Automotive Grade Solutions (supporting Functional Safety)

Digital Mass Flow Sensor Family FS1012 / FS2012

Analog Mixed Signal Systems

General Types of Flow Meters

• Mass Flow

- Measures Mass Flow Rate of the Fluid
- Thermal or Coriolis Force
- Good at Gases (e.g. Chemical Reactions) other Meters Cannot Measure
- Differential Pressure
 - Measures Drop in Pressure Across a Constriction
 - Accounts for up to 20% of World's Market Use
- Velocity
 - Measures Velocity of Stream
 - Ultrasonic, Electromagnetic, Paddlewheel
- Positive Displacement
 - Mechanical Systems that Measure Actual Flow of Fluid
 - Rotary Vane, Gear Types, Rotating Disk, etc.

Example of a thermal mass flow meter (constant temperature differential)

IDT Flow sensors utilize <u>thermopile</u> sensing!

Mass Flow Sensor Product Family

- These devices are IDT's first standard products offering porous silicon technology for the sense element
 - MEMS "solid-state" mass Flow sensor
- The Flow sensors are designed for broad market applications including medical and beverage industries
- IDT Flow sensors' strong distinctions
 - High performance solid-state MEMS Flow sensor module for liquids and gases

Flow Sensor Family Different Integration Levels

Solution	Packaged MEMS	MEMS Sensor on PCB	MEMS Sensor with on-board circuit		
	Analog output	Analog output	Analog Output Non-calibrated	Analog + Digital output Fully calibrated	
Support level	High	High	Low	Low	
Integration effort	High	High	Low	Low	
ASP	Low	Medium	Low	High	
Product	FS3000 *	FS1012	FS102x	FS2012	

* Roadmap

FS1012/2012 Product Overview

High Performance Solid-State MEMS Flow Sensor Module for Liquids and Gases

Features

- MEMS Thermopile sensing
- Silicon-carbide coating over MEMS Flow sensor
- 3V to 5V supply (5V for FS2012)
- Analog output, 0V to 5V (FS2012)
- Digital Output, I2C (FS2012)
- · Small and compact module footprint
- Flexible product versions
 - Raw sensor voltage output (FS1012)
 - Fully calibrated and compensated Flow for gas or liquid (FS2012)

Benefits

- Suitable for gas and liquid
- Robust solid isolation technology
- · No cavity in MEMS element to cause clogging
- Resistant to vibration and pressure shock
- · High temperature Flow housing
- Food-grade compatible version
- Typical 8ms Fast Response Time
- · High sensitivity
- Easy cleaning and sterilization

© Copyright 2018, IDT Inc.

Flexible Flow Sensor Solutions with Easy-to-Use Evaluation Software

Status	Released product
Availability	Samples available now
Production	October 1, 2017

Flow Sensor **Technology Comparison**

"	IDT Solid State" MEMS	Competitor A Thermal-based	Competitor B Thermal-based
	Solid Silicon Thermal Isolation	Thin Membrane over Cavity (Fragile)	Thin Membrane over Cavity (Fragile)
	Resistant to water condensation, Particles, Pressure Shock/Vibration	× RTD Sensing (Noisy)	× RTD Sensing (Noisy)
V	Easy cleaning and sterilization	× Wire-Bonds not Protected	× Cannot be Cleaned
	Thermopile Sensing (Low Noise)		Attract Fuel Vapor Contamination/Particles
V	Low Operating Temperature		

Flow Sensor Performance Comparison

	IDT	Competitor
MEMS Sensor	Utilize Thermopile SensingHigh Signal-to-Noise	 RTD Low Signal-to-Noise
Accuracy	 2% of reading (typical) 	 ~5% Full Scale
Robustness	 Resistant to Particles Vibration and Pressure Shock Resistant 	 Particles or Water Condensation will Damage the Micro-bridge Sensing Element Mechanical & Pressure Shock will Damage Sensing Element
Output	Analog or DigitalLinearCustom	• Non-Linear
Supply Voltage	• 3 to 5V	• ≥5V

Markets and Applications

Industrial Process Applications

•Oil and gas leak detection

•HVAC and air-control systems

•White Goods (home appliance)

•Liquid dispensing and metering systems

•Air speed and wind meter

Medical/Healthcare Applications

•Me

•Prc

•Oxygen canalus

•CPAP (continuous positive airway pressure) and respiratory devices

Breathalyzer

•Ma Automotive Applications

·Dieser luer riow

•Brake fluid Flow

•Cabin air quality

Application Example Beverages: Coffee Machines

Cleanable device

Application Example Beverages: Fountain Drink Dispenser

- Flow rate accuracy
- Cleanable device

HS300x Understanding Relative Humidity Sensors and Applications

What is Relative Humidity?

- Humidity is moisture or water vapor in air or gases
- RH is the ratio between the amount of water vapor (moisture) in the air at a given temperature to the maximum amount of water vapor the air can hold at that temperature; expressed in %
- RH is relative to the temperature at that moment
- Warm temperature can hold more moisture than cold temperature
- Dew Point is a better indicator for "how comfortable the air feels", it is equal to or lower than ambient temperature
- Absolute Humidity is independent of temperature, 30grams/m³ at 35°C

Example of RH Changes with Temperature

Types of RH Sensor

- Capacitive
 - Change in dielectric of a polymer based material
 - CMOS processing compatible
- Resistive
 - lons through conductive polymer film or salt changes the impedance of an inter-digit electrodes
 - Tradition thick film on ceramic substrate using noble metal as electrodes
- Thermal Conductivity
 - Absolute humidity

Key Parameters

- Accuracy
 - Less than ±2%RH is high precision
 - ± 1%RH are calibration chamber units; 7% to 80%RH at 18°C to 23°C
- Long-Term Stability
 - %RH Drift per year
- Response Time
 - In seconds, initial value to 63% of total variation
- Environmental and Chemical Resistance
 - Effects from airborne contamination

Market Segment & Applications

Consumer	White Goods	Industrial	Medical
 Thermostats Printers Mobile Devices 	 Microwave Oven Dryer Refrigerator 	 Home Appliances Air Quality Monitoring Weather Stations HVAC, Air-Control Systems Food Safety 	 Gas Quality Laboratory Equipment Respiratory Equipment Incubators Sterilizers Drug Processing
			22.5 10.51 00.01.00 00.01.00

HS300x Product Overview

• Features:

- Silicon carbide structure
- ±1.5%RH accuracy (HS3001)
- Fast RH response time (Typ. 6 seconds)
- 0.1%RH/Yr drift
- 14-bit resolution: 0.01%RH (Typ.)
- Low power consumption: 1.0µA average
- Digital output
- Extended supply voltage: 2.3V to 5.5V
- 3.0 × 2.41 × 0.8 mm LGA
- Product family approach for varied accuracy levels

• Benefits:

- Integrated temperature and humidity sensing solution
 - Small form factor solution with lower system cost
- Low power consumption saves battery
- 14-bit high resolution provides extremely tight accuracy
- Insensitive to environmental contaminants like dirt and dust
- Small size solution saves space & BOM for compact designs
- On board calibration reduces time to market
- Wide supply voltage range eliminates the need for LDO/DC-DC

Application Circuit

Pin-Out Diagram

HS300x Product Family

Device	Relative Humidity	Temperature
HS3001	±1.5%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA	-40°C to +125°C
HS3002	±1.8%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA	-40°C to +125°C
HS3003	±2.8%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA	-40°C to +125°C
HS3004	±3.8%RH (Typical), 3.0 × 2.41 × 0.8 mm, 6-LGA	-40°C to +125°C

Competitive Price-to-Performance Value Product Family Choices

HS300x Competitive Advantages

- · Silicon-Carbide structure sensor technology
 - Capacitive sensing
 - Very high strength and reliability
 - Low drift, excellent stability against aging
 - Highly resistant to chemicals

Supplier	Accuracy	Response Time	Long-Term Stability	Size (mm)	
IDT HS3001	±1.5%RH, ±1.8%RH max	6 seconds	0.1%RH/Yr.	3 × 2.4 × 0.8	
Sensirion SHT35	±1.5%RH, ±2.0%RH max	8 seconds	0.25%RH/Yr.	2.5 × 2.5 × 0.9	
TI HDC2010	±2.0%RH	8 seconds	0.25%RH/Yr.	1.5 × 1.5 × 0.675 (CSP)	
Silabs Si7013	±3.0%RH	17 seconds	0.25%RH/Yr.	3.0 × 3.0 × 0.75	

IDT Value Proposition:

Accuracy, response time and ultra-low power consumption along with longterm stability.

Sales & Design Collateral

MARKETING COLLATERAL

- Sales presentation: Saleslink
- Product overview: IDT.COM website
- Product video: IDT.COM website

DESIGN DOCUMENTATION

- Datasheet: IDT website
- Evaluation board manual: IDT website

OTHER INFO

- Evaluation Kits: SDAH01, SDAH02, SDAWIR01/02
- Blog: IDT.com/blogs

Thank You

Analog Mixed Signal Product Leadership in Growth Markets

Analog Mixed Signal Systems

IDT Inductive Position Sensors

2018.10.24 | Andy Tan | IDT AIG

© Copyright 2018, IDT Inc.

Analog Mixed Signal Systems

Content

- Marketing and technical background
 - Position sensor solutions & comparing
 - Target markets and applications
- Inductive position sensing technology
 - Eddy current effect
 - Signal conditioning block and flowing
 - Key parameters and Application tips
- EVK introduction (help to start ZMID520X)

ZMID520x Inductive Position Sensors

Marketing and technical background

Analog Mixed Signal Systems

What is a Position Sensor?

Position Measurement

Types of Position Sensors

Magnetic

Resolvers

On-off rotary

Up-down rotary switches

Contactless Position Sensors

Position

30

IDT Inductive Position Sensors

COMPANY CONFIDENTIAL

© Copyright 2018, IDT Inc.

- No magnet needed
- Total stray field immunity ISO 11452-8 compliant

Position

Sensor

- Ultra-thin solution Small form factor
- No external sensor chip needed the sensor is a PCB coil
- Compliant to auto standards -AECQ-100, ESD, EMC
- Suitable for high temperature
- On and off-axis capability and alignment

Spec

Application Circuit

32

COMPANY CONFIDENTIAL

© Copyright 2018, IDT Inc.

Table 3. Operating Conditions

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Т _{АМВ}	Ambient temperature		-40		150	°C
TJ	Junction temperature		-40		175	°C
TSTOR	Storage temperature		-50		150	°C
Rthja	Thermal resistance junction to ambient				140	°C/W
VVDDE	Supply voltage		4.5	5	5.5	٧
ESD	Electrostatic discharge, HBM 100pF/1.5kQ	Pins VSS, VCC	±4			kV
		Pin SOUT ^[a]	±3			kV
		All other pins	±2			kV

ZMID520x Inductive Position Sensors

Application Categories

Analog Mixed Signal Systems

Application categories

Motor Commutation

Position sensor to allow motor control

Non-Motor Comm.

Typical Linear Applications

液位检测Level Sensor换挡器Gear Shift Lever Position双离合器Dual Clutch Transmission自动变速器Automatic Manual Transmission一般应用General purpose linear potentiometers其他Etc..

Non-Motor Comm.

Typical Rotative Applications

360° full turn

Arc

Non-Motor Comm.

Position Sensors

Inductive Position Sensing Technology

Analog Mixed Signal Systems

Block Diagram

Eddy Current Effect

90°

Sin

Rectangular coodinates

CORDIC = Coordinate to Rotation Digital Computer: Converts rectangular coordinates (sin,cos) into polar coordinates (angle, magnitude)

© Copyright 2018, IDT Inc.

Airgap versus Coil Size

- Short airgaps between target and coils provide good Rx signal (low noise).
- Increasing airgap reduces the signal strength (weaker signal).
- Due to ratiometric measurement, change in airgap does not change the angle value !

Magnetic circuits can be easily scaled: double coil width = double airgap Max airgap should be \sim 30-40% of Tx coil width or coil radius

e.g. <~2 mm airgap for 6mm Tx coil width <~5 mm airgap for 15mm Tx coil width

Analog Mixed Signal Systems

COMPANY CONFIDENTIAL

What about metallic objects at the bottom of the Sensor ?

The sensor cannot distinguish a metallic object on the top or at the bottom of the coils !

Metalic objects (e.g. ground planes, metal housings) will weaken the magnetic field, but can still be placed **close to the bottom of the sensor**, as long as they are **not moving** relative to the coils. Possible non-linearities caused by non-moving unwanted metal objects can be corrected by linearization.

Unwanted **moving** metallic objects at the bottom of the coils are OK if they are placed **far enough away from the coils**.

minimum distance (airgap) of an unwanted moving metallic object = >2x coil width (linear) or >2x coil radius (rotary)

Accuracy changes with angle range

Accuracy = Actual position vs. measured position: down to **0.2% full scale (FS)** Imperfections on coil design (e.g. offsets, non-linearities) can be corrected on-chip by offset-correction and 9-point linearization in a non-volatile memory Resolution = number or size of steps within the angle range

Angle Range	Resolution in mech° ZMID5201, -5202 (AngleRange/1024)	Resolution in mech° ZMID5203 (AngleRange/4096)	Accuracy @ 0.2% Full Scale in mech° (AngleRange x 0.002%)
20° (e.g. Pedal)	0,02°	0,005°	0,04 °
90° (e.g.Throttle)	0,09°	0,022°	0,18 °
180° (e.g. Robot)	0,18°	0,044°	0,36 °
270° (e.g. Potentiometer)	0,26°	0,066°	0,54 °
360° (e.g. rotary knob)	0,35°	0,088°	0,72 °

ZMID520x Inductive Position Sensors

Stray Field Immunity

Analog Mixed Signal Systems

Why Stray Field immunity ?

- 1. Higher electrification in cars (Hybrids, Electric vehicles, added comfort)
- 2. Increasing number of sensors in cars
 - Up to 50 position sensors in a vehicle
- 3. Strong currents in electric wires generate (unwanted) magnetic stray fields
 - Battery charger
 - Electric drive motors
 - Electric braking
 - Electric suspension
 - Future wireless charging stations create large magnetic stray fields

by regulation bodies Due to increasing electrification in vehicles, the limits for stray field immunity have been risen by a factor of 3 and more by OEM's and

regulation bodiesISO11452-8:

was: Stray field $\leq 1000 \text{ A/m}$ (until June 2015) new: Stray field $\leq 3000 \text{ A/m}$ (since June 2015)

• Some OEM's demanding up to 4000 A/m

Stray Field immunity is defined

 This change benefits sensors that are immune to stray fields -> Inductive, Optical
 With stray field =

46

Current in a cable generating a stray field

Position

Sensor

Why are Inductive Sensors not affected ?

- Magnetic stray fields are generated in the range of 0...150 kHz
- Magnetic sensors (Hall, AMR, GMR, TMR) operate in the range of 0...~2 kHz. This is inside the stray field frequency band
- Inductive sensors don't use permanent magnets. They operate in the range of 1-10 MHz. This is **outside** of the stray field frequency band

ZMID520x Inductive Position Sensors

EVK Introduction

Analog Mixed Signal Systems

EVK Introduction

https://www.idt.com/products/sensor-products/position-sensors/zmid5201stkit-zmid5201-inductive-position-sensing-starter-kit

Includes:

- **Configuration:** EEPROM/data write/read
- Calibration: Offset, Slope, linearization
- Performance evaluation: operation, magnitude, angle

Thank You

Analog Mixed Signal Product Leadership in Growth Markets

Introduction to IDT Gas Sensor

Oct 2018

Analog Mixed Signal Systems

VOC: Volatile Organic Compounds

Indoor Air Quality

Importance of Indoor Air Quality

Health effects from elevated exposure to VOC

- Eye, nose and throat irritation
- Headaches, loss of coordination and nausea
- Damage to liver, kidney and central nervous system
- Some organics can cause cancer in animals, some are suspected or known to cause cancer in humans

Sources of Common Indoor VOC

VOC Class	Examples	Source		
Alkanes	n-Butane,n-Octane	Aerosol spray products, cosmetics		
Alkenes	lsobutylene, Ethylene	Solvents, fruit ripening, pest control, rubber		
Aromatics	BTEX, Naphthalene, Styrene	Tobacco smoke, moth balls, air fresheners, automotive exhaust products		
Halocarbons	Methylene chloride, PERC, R125, R-410A	Dry cleaned clothes, refrigerant, dehumidifiers, urinal deodorizer block		
Alcohols	Ethyl Alcohol, Isopropyl Alcohol	Cleaning agent, plasticizer, hair spray		
Terpene	a-Pinene (pine odor), d-Limonene (citrus odor)	Cosmetics, citrus/orange oil, pine oil cleaners, fragrance additive, wood		
Aldehyde	Formaldehyde, n-Hexanal	Disinfectants, upholstered fumiture, carpets, plywood		
Ketones	Acetone, Methyl Ethyl Ketone (MEK)	Nail polish remover, PVC cement and primer, various adhesives		
Siloxane	Octamethylcyclotetrasiloxane (D4)	Cosmetics, soaps, defoamer, detergent, antiperspirants		

© Copyright 2018, IDT Inc.

Indoor Air Quality (IAQ) Rating

IDT IAQ Rating	Reference Level*	Air Information	TVOC (mg/m ³)	Air Quality
≤ 1.99	Level 1	Clean Hygienic Air (Target value)	< 0.3	Very Good
2.00 – 2.99	Level 2	Good Air Quality (if no threshold value is exceeded)	0.3 – 1.0	Good
3.00 – 3.99	Level 3	Noticeable Comfort Concerns (Not recommended for exposure > 12 months)	1.0 – 3.0	Medium
4.00 - 4.99	Level 4	Significant Comfort Issues (Not recommended for exposure > 1 month)	3.0 – 10.0	Poor
≥ 5.00	Level 5	Unacceptable Conditions (Not recommended)	> 10.0	Bad

Basis for Determination

- Study by German Environmental Agency (UBA)
- Evaluated at IDT's gas labs

Certification for ZMOD

• External 3rd party laboratory study with independent evaluation of conformance

* Source: Umweltbundesamt, Beurteilung von Innenraumluftkontaminationenmittel's Referenz- und Richtwerten, (Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2007).

Key Attributes of IDT Gas Sensors vs. Other Gas Detection Solutions

eting logies	Electrochemical + VOC	PID + VOC, methane + Low Detection limits	NDIR + VOC, CO ₂
Compe Technol	 Less Robust Shorter lifetime Expensive 	Higher maintenanceShorter lifetimeExpensive	Not for trace detectionExpensive

IDT Technology

Chemiresistor

++ VOC, e-CO₂ ++ Low Detection limits ++ Long Lifetime ++ No Maintenance ++ Low Price

© Copyright 2018, IDT Inc.

IDT's MOx Gas Sensor Technology

Working Principle

Ceramic-based Analog Gas Sensor

Silicon-based Digital Gas Sensor

- Sensors reliably measure gases in air
- Fast response and recovery to gas
- Excellent stability and sensitivity
- Sensors operate via diffusion or active flow

Metal Oxide (MOx) Sensor Principles

- Working Principle of Chemiresistor
 - Gas generates free charge carriers in MOx
 - Changes resistance of MOx
- Influences to MOx Resistivity
 - Temperature

© Copyright 2018, IDT Inc.

- Gases (present atmosphere)
- Oxygen Concentration
- Surface geometry (particle shape & production technology)
- Chemisorption reaction on surface of MOx
 - Oxygen is adsorbed at different phases on MOx surface
 - Gas molecules arrive and adsorb on sensor surface
 - Reaction between gas and oxygen
 - Oxygen equilibrium on surface is disturbed, transferring charge

Fired Material at 800°C

ZMOD Platform

3.00 x 3.00 x 0.70 mm LGA

ZMOD4xxx Combines Proven Elements in a System

Si-based Micro hotplate with Metal Oxide coating

ZSSC3250 ASIC for I²C output

Package with Gas Inlet

- ✓ <u>Upgradeable</u> platform leveraging multi sequence flexibility
- ✓ MOx material with 12 years of experience, proven stability
- ✓ Calibrated solution with <u>easy I^2C integration</u>

ASIC Flexibility and Sensor Performance

- Accurate heater temperature control (±0.5K)
- Digital communication with I²C interface with up to 400kHz
- ADC resolution: adjustable for speed and resolution (max.16-bit)
- Tailored temperatures enable sensitivity to target gases and selectivity
- <u>New products and features via software upgrade to ASIC settings</u>

ZMOD4410 Response to UBA Study

TVOC Concentration [mg/m³]

62

© Copyright 2018, IDT Inc.

TVOC is a subset 25 of EPA's TO-15/17 certified mixtures

Sensor Response Time (TVOC)

- Average Response Time to 90% Full Scale: 7 seconds
- Influenced by
 - Fest Chamber and Tubing (dead volume)
 - Gas Flow Rate
 - > Sensor Sampling Rate

Stability and Accuracy of a Calibrated Sensor Response

eCO₂ Correlation

- IDT has collected months of continuous measurement data from several locations in offices, labs, homes, kitchens in different countries
- Referenced to different high-end CO₂ instruments
- Results were used for an estimated CO₂ algorithm ("eCO₂")
- Algorithm is secured with a patent (pending)

→One sensor provides 2 readings

→ TVOC

 \rightarrow eCO₂ – Human source

Waterproof

- IDT's gas sensor has been tested with different membranes.
- Membranes tested are both hydrophobic and oleophobic, and are permeable to humidity and VOC at the same time.
- All tests have been performed at different gas concentrations and were repeated.
- A suitable membrane material has been identified which is suitable for permeation of target gases (pending patent).
- IDT can provide waterproofed sensors or support design of the sensor into a waterproofed device (IP68 classification)

Key Attributes of IDT ZMOD Sensors vs. Other Solutions

- Best-in-class reliability, expressed by signal to noise
 - Signal is sensitivity to the target gas, e.g. VOC
 - Noise is everything else, e.g. drift, response to humidity...
- **Over 10 years of experience** supplying sensors into regulatory environments; performance is proven in demanding applications
- IDT MOx Technology **Best-in-class technical support**: detailed collateral, dedicated application engineering team at three engineering gas lab locations

	ZMOD4410	Other MOx Sensors	Electrochemical	PID
Reliability	Excellent	Good	Easily Damaged	High Maintenance
Lifetime	Long (5+ years)	Long	2 years typical	3 years typical
Range	Best < 0.1 ppm to 1000 ppm	Very Good	Good at higher end	Good at low end

Typical System Integration

of operation TVOC

IDT Precompiled Code on Customer Microcontroller

Application	μC Platforms* Supported	Application	Microcontroller
ZMOD4410- Standard TVOC / IAQ / e-CO2	ARM Linux MSP430 Windows	Bathroom & Kitchen Fans	ARM Linux MSP430 Windows

*additional Microcontroller platforms to be added

Firmware Upgradeable – Indoor Air Quality

Description	Where Used	Target Gases & Concentration	Sampling Rate	Function	When (CY)
Standard TVOC/IAQ/ eCO ₂	HVAC, air conditioners, air purifiers, thermostat, IAQ monitors	TVOC target 160 - 30,000 ppb UBA Level 1 - 5+ eCO ₂ 400 - 5000 ppm	Continuous	Display levels, user alerts, control ventilation	Released
Odors	Bathroom & kitchen fans	VOC (Cleaning agents, toluene, etc.); VSC (volatile sulfur compounds) ppb to ppm	Continuous	Automate ventilation	Released
Low Power (1mW)	IAQ monitors, rechargeable & portable devices	TVOC / UBA / eCO ₂ (see levels above)	6 sec	Display levels User alerts	Release: December 2018

ZMOD4xxx Family Expansion Near Term Roadmap

Product family defined by MOx, test & calibration Product releases and features defined by software

HiCom Evaluation Board

- 1) Download and install ZMOD4410 demo software from IDT.com/ZMOD4410-EVK.
- 2) You may need to install the FTDI driver at http://www.ftdichip.com/FTDrivers.htm.

- 1) Attach sensor board to Hi Com board and connect it to the computer with the USB cable.
- 2) Launch ZMOD4410 demo software with the executable file ZMOD4410_Evaluation_Software.bat.

We support our Customer with Gas Testing

Solvent Evaporation

- Dispense a known quantity of solvent into a defined chamber
- Equipment required
 - Chamber
 - Microsyringe
 - "Solvent Calculation" spreadsheet Available upon request to convert volume solvent to concentration (ppm)

Portable Calibration Cylinders

Low pressure transportable calibration cylinders

Certified Gas Cylinders and Mass Flow Controllers (MFC)

- Cylinders purchased from Vendor
- MFC used to blend variety of concentrations with high accuracy
- Available at IDT labs in Dresden and Longmont, plus San Jose test floor
- Requires significant infrastructure for safe handling

IDT Advantage

- MOx material
 - 12 years of proven reliability; sensors still in operation recording data
 - Immune from environmental Siloxane contamination
 - Best performance in stability and sensitivity
- <u>ASIC</u>
 - Configurable with steps define a methods of operation
 - Rapid new and upgradeable sensors without changing hardware
- <u>Calibration</u>
 - Electrical and Chemical calibration
 - $\circ~$ Each sensor is calibrated with a defined concentration of ethanol
 - Consistent performance from lot to lot
- <u>Clear definition of clean air</u>
 - Collaboration with the German Environmental Agency's (UBA) clean air study
 - 3rd party validation
 - End consumers are assured of clean air definition and testing

Thank You

Analog Mixed Signal Product Leadership in Growth Markets

Analog Mixed Signal Systems

Introduction to IDT SSC design

October 2018

Analog Mixed Signal Systems

Typical SSC Module Design Solutions

An Example of Discrete Solution

A simple condition circuit (from Internet)

- ADC is not presented, as most MCU has integrated ADC;
- Single end topology is in the example, differential one needs more and expensiver components;
- 3) Calibartion would be done in AP side.

An Example of Integrated Solution(ZSSC3218)

- Every SSC contains analog path (sensor input, multiplexer, amplifier, AD converter)
- Additionally SSCs contains other peripherals

Analog Multiplexer, Amplifier

 Each SSC contains one amplifier (consisting of one ore two stages)

→multiple measurements must be multiplexed to the amplifier

- Amplifier increases signal span of the sensor for optimal ADC input
- But bring also an additional nonlinearity to the signal

Analog Digital Converter

$$Z_{ADC} = \left(\frac{V_{\text{IN}}}{V_{REF}} + Offset\right) \cdot 2^{\text{Resolution}}$$

Main parameters relevant for AD conversion:

- ADC Architecture
 - CB-Charge Balancing / Sigma-Delta
- Resolution
 - Product/Configuration depending: 9..24 Bit
- Reference Voltage
 - Ratiometric (Wheatstone bridge sensor)
 - Absolute (Temperature sensors)
- Offset
 - Compensating sensor offset voltages

ADC Resolution

- Higher ADC-Resolution provides the option for a better digital signal quality
- Higher resolution does not mean more quality, but
- Highe resolution means more conversion time

ADC Ratiometricity

• General: In a ratiometric method of measurement, the signal of interest is measured with respect to a second signal as a ratio

 $V_{OUT} = \frac{X}{Y} V_{IN}$

- Interferences on the V_{REF} will have affects on the Bridge Output, the amplefier ouutput and teh reference volatge of the ADC
- \Rightarrow Variance on $_{V_{BR}}$ will proportionally affect ADCs digital output $_{D_{OUT}}$

ADC Offset

- Basically the offset is applied before ADC
- The input signal range is shifted down referring ADCs input range
- Complete sensor output is shifted
- Adjustment to ADCs Input

Calibration Theory – Transformations

Calibration Theory - Linearization

AFE Setup

 adopt sensor signal to SSC internal digital representation

Calibration

- linearize sensor signal
- scale signal to output range (eg 8/16 Bit for I²C or OWI, 12Bit for SENT, 100% for Analog

Calibration Dialog

temperatures (2nd order)

DIDT.

Calibration Dialog

2 Point Calibration

- 1st order linearization
- no temperature compensation
- just adopting gain and offset

2 different pressure points at same temperature

the targeted output values that shall be present at the calibration points

4 Point Calibration

- no temperature compensation
- calibrate non-linearity

				<u>`</u> ا	albradon rype.	
^	1	1			Bridge Calibrati	Cubic
Pmax				-	Compensation	None
P2				- -		
P4				-		
P3				-		
P1				_		
Pmin	Ĭ	Ţ.	Ī	→		
т —						
	T1	то	T2	1		
1easureme	nt data and ta	rgets				
leasureme	nt data and ta T1	rgets TO	T2	Targe	ets[%]	
leasureme P2	nt data and ta T1	T0 12960	T2	Targe	e ts[%] 90	
leasureme P2 P4	nt data and ta T1	T0 12960 11370	T2	Targe	90 60	
leasureme P2 P4 P3	nt data and ta T1	T0 12960 11370 10000	T2	Targe	90 60 30	
P2 P2 P4 P3 P1	nt data and ta T1	T0 12960 11370 10000 8430	T2	Targe	90 60 30	

4 different pressure points at same temperature to calibrate non-linearity

8 Point Calibration

values in a row must be at same pressure (but different temperature)

- 3rd order linearization
- 2nd order temperature compensation

acquire 2x same pressure at different temperatures for compensation different temperature points

The Comparations on Two Solutions

Items	Discrete solution	Integrated solution(1)	Note
Flexibility	Less	Configurable	the SSC profile in datasheet
BOM cost	lower	Higher	Material cost of SSC module
Assemble			
cost	High	Low	PCB size, aux components
Invisible cost	High	Low	Design, debug, quality(2), etc.
Consistency	low	High	Part to part, batch to batch
Performance	low	High	Linearity, noise level, etc.
Robustness	low	High	Stability, EMC, etc.

- 1) Take IDT SSC device for example here;
- The discrte solution can be adjusted by different combination of components and their parameters, but the the general topology is fixed once the Gerber is taped out;
- 3) Might make side effect to after sale service, and brand reputation.

Thank You

Analog Mixed Signal Product Leadership in Growth Markets

