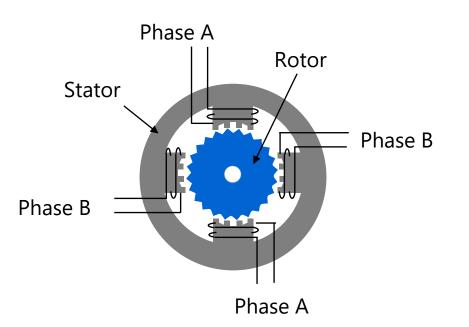
To Audiences

Consumer & Industrial Motor Control Driver (MCD)

TOSHIBA

Toshiba Devices & Storage (Shanghai) Co., Ltd.

2020.7.23



- 180 MCD products
- Over 40 year experience with motor control
- Over 2 billion MCDs shipped
- Toshiba's original technologies
- Toshiba's advanced BiCD & CD processes

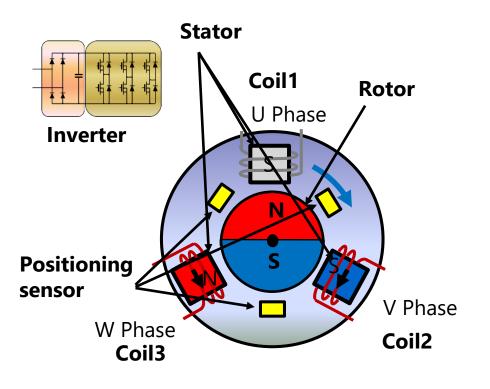
Stepping Motor

Accurate positioning, low cost, limited speed range

Permanent Magnet type

Advantage

Accurate position control Affordable price No positioning sensor required (Open loop control)


Disadvantage

Limited speed range (risk of stalls) Resonance effect in a certain velocity band (risk of stalls)

Brushless DC (BLDC) Motor

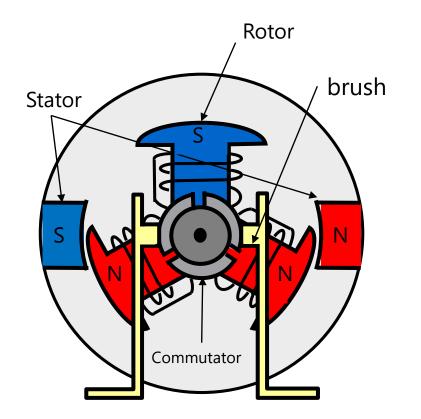
Higher cost, high efficiency, long lifetime

BLDC (3-slot 2-pole)

It is called **brushless** because brush and commutator are not used compared to brushed motor

Advantage

High speed High energy efficiency


No mechanical contact \rightarrow Long life, maintenance-free, low noise

Disadvantage

High cost: Rare earth magnet, Hall sensor, more complex control circuit

Brushed DC (BDC) Motor

Low cost, low efficiency, reduced lifetime

Rotor: The part of the motor which is spinning Stator: The frame of the motor which is not spinning It is called **brushed** because current flows to coils through brushes.

Advantage

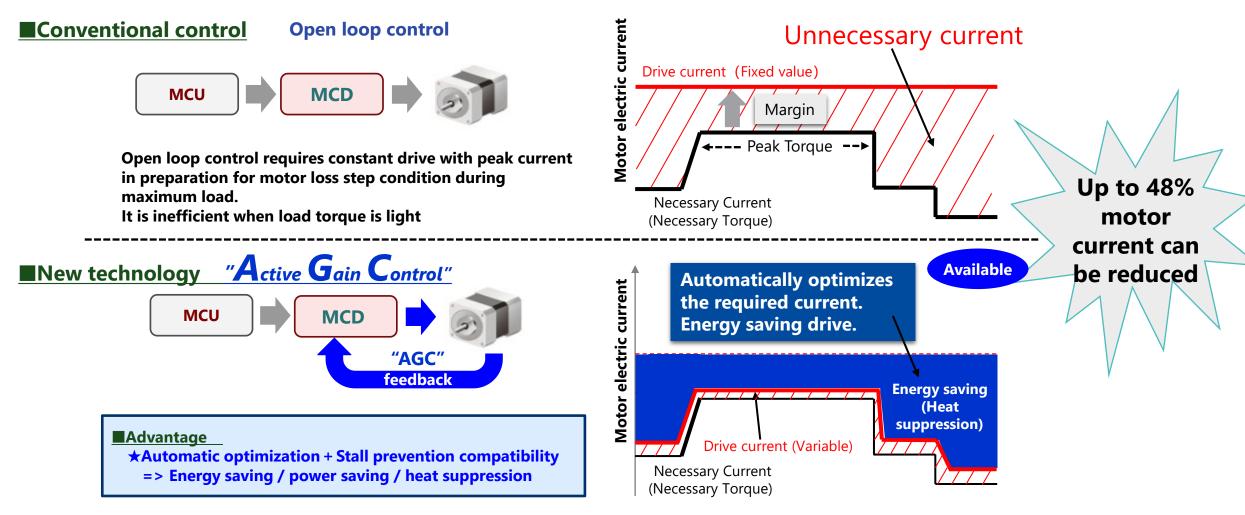
Simple controlling results in low cost .

Disadvantage

Brush and electrical noise

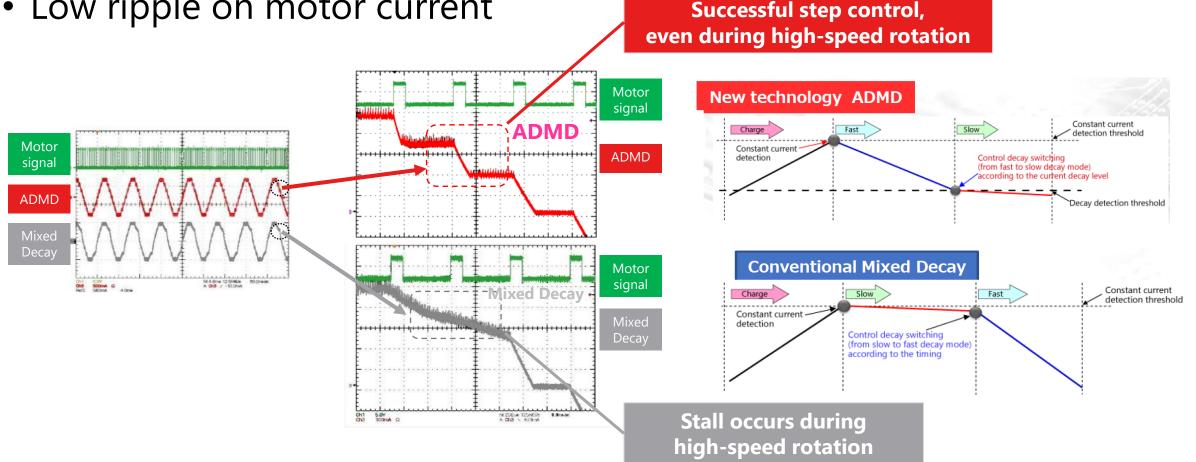
Brush deterioration requires periodic maintenance Reduced energy efficiency

01


Stepping Motor Control

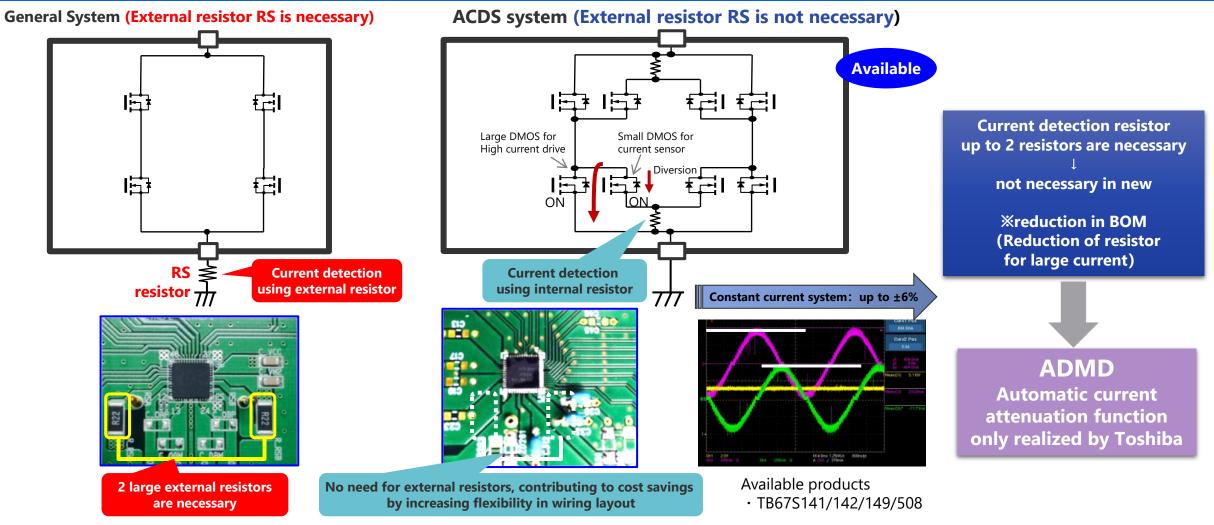
Toshiba original technologies - Product highlights

Active Gain Control (AGC) - Adjusting motor current according to torque load


Up to 48% motor current can be reduced

Advanced Dynamic Mixed Decay (ADMD)

Up to 30% higher rotation speed, reduced noise & vibration


- Pseudo sine wave motor current
- Low ripple on motor current

7

Advanced Current Detection System (ACDS)

Lower cost, smaller footprint, improved constant current accuracy

TB67S128FTG - 50V, 5.0A, 128step (Max.) 1ch Stepping Motor Driver

Features

- 128 steps (µStepping) ٠
- Up to 1024 steps via SPI ٠
- Low $R_{DS(ON)}$ (L+H): 0.25 Ω (typ.) ٠

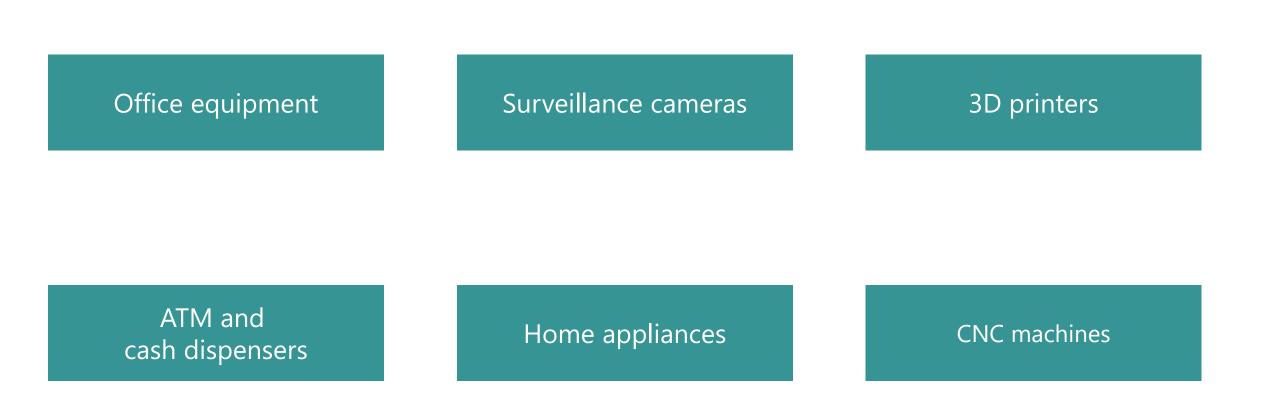
Benefits

- Stall prevention ٠
- Reduced energy consumption ٠ & heat generation
- Ultra-silent operation ٠
- High rotation speeds ٠
- Reduced BOM cost and footprint ٠

AGC **Conventional Technology Active Gain Control** Supplied Required Current Current Supplied Current Required Current Current Current Margin Excess Motor Energy **ADMD Conventional Mixed Decay Advanced Dynamic Mixed Decay** **** 5.0Y

ACDS

Conventional Technology

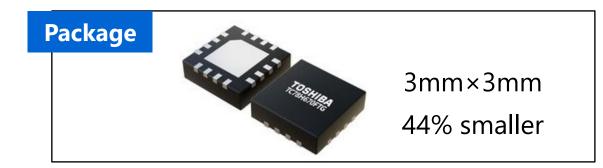

A Chains 438mA

TB67S128FTG

Suitable for demanding applications

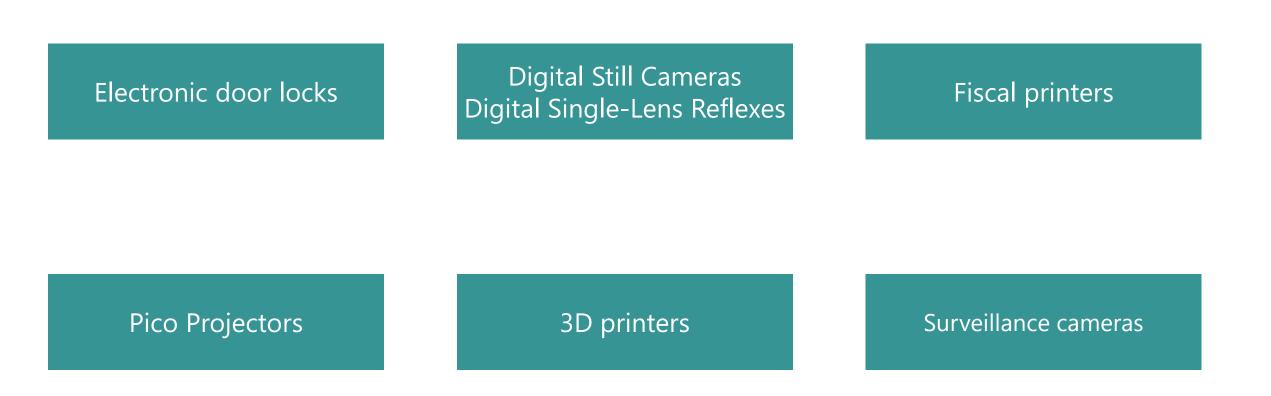
TC78H670FTG - 18V, 2.0A, 1/128 Micro Step (Max.) 1ch Stepping Motor Driver

Features


- 128 steps (µStepping)
- Up to 1024 steps via SPI
- High drive current of 2A
- Ultra-low standby current of 0.1µA

<section-header>

Benefits

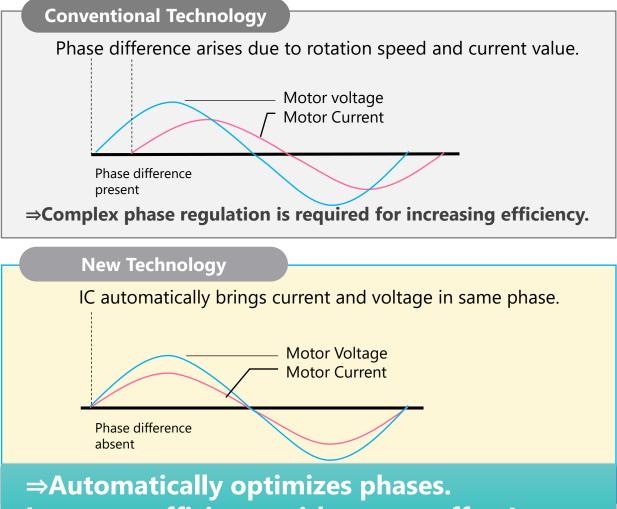

- Cost efficient due to G4 process
- Ultra-silent operation
- Reduced BOM cost and footprint
- Long battery lifetime

ACDS Conventional Technology Advanced Current Detection System Output Detection System Output Detection System Output Detection System Output Detection System

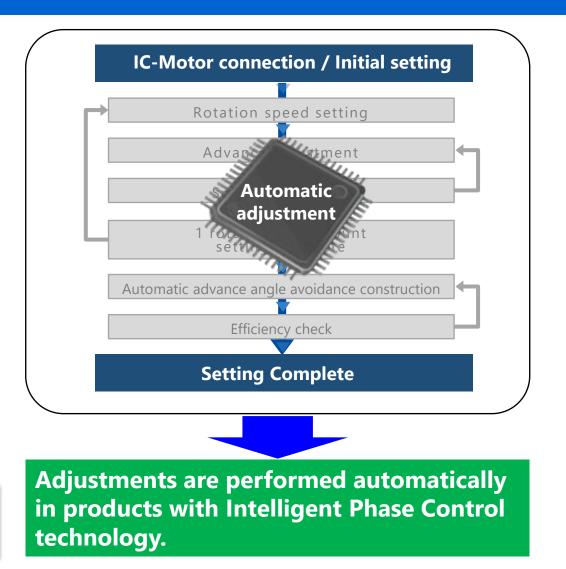
TC78H670FTG

Suitable for space restricted and battery powered applications

02

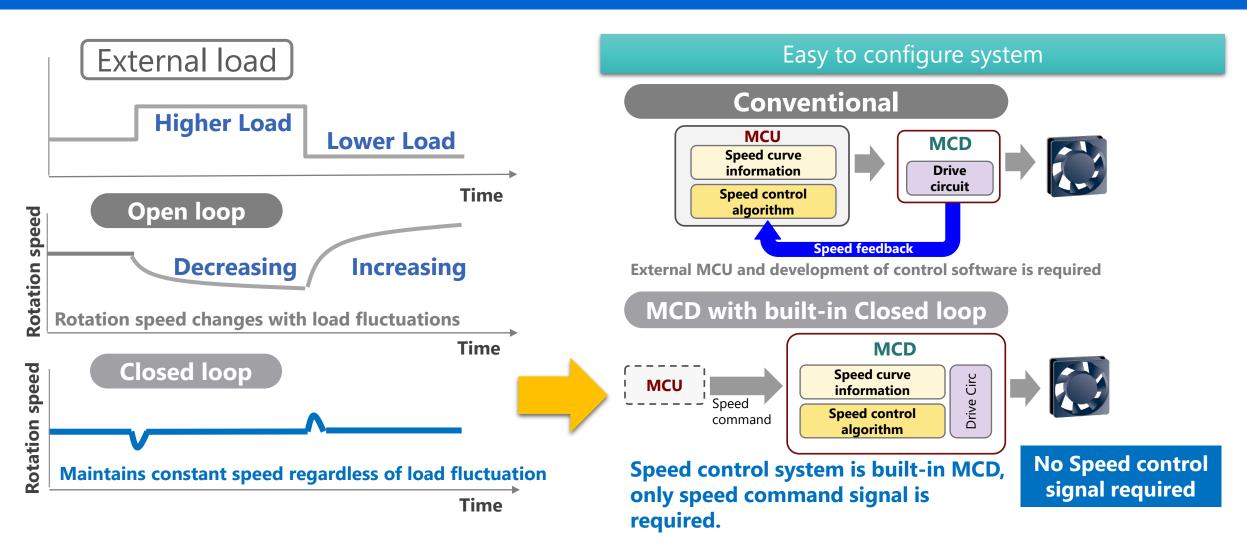

Brushless DC (BLDC) Motor Control

Toshiba original technologies - Product highlights



Intelligent Phase Control

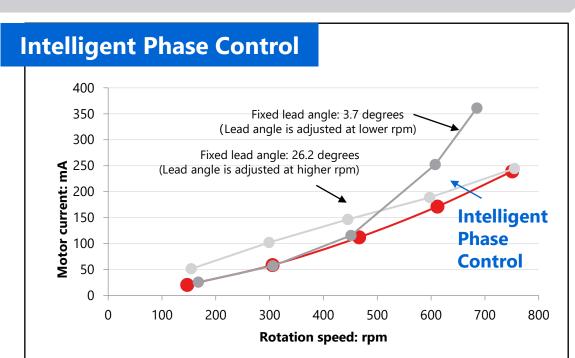
Automatic adjustment of voltage and current phase

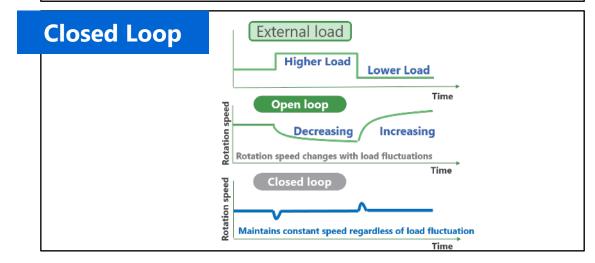


Closed Loop Speed Control

Built-in speed control circuit with speed feedback

Improves rotations speed accuracy by reducing the fluctuations due to voltage and load change


TC78B027FTG - 18V, Sine Wave 1-sensor Type 3-phase BLDC Motor Pre-Driver


Features

- Integrated NVM-based rotation speed control
- Sine wave drive with 1 or 3 hall sensors
- Adjustable gate drive current

Benefits

- Reduced energy consumption
- Uniform rotation speeds up to tens of thousands RPM
- No MCU required
- Scalable power stage

TC78B027FTG

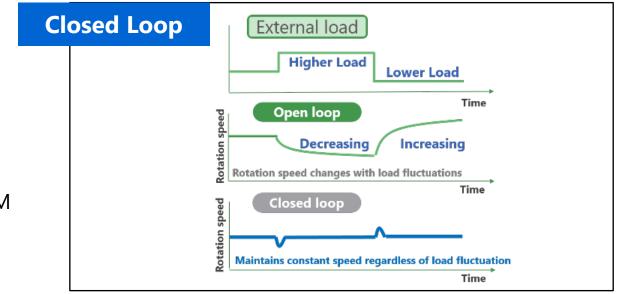
Suitable for mission critical 12V fan applications

Home appliances

Industrial equipment

TC78B009FTG

30V, 200mA, 3-Phase Sensorless BLDC Pre-Driver


Features

- Integrated NVM-based rotation speed control
- Adjustable gate drive current up to 200mA
- Built-in amplifier for motor current monitoring

Benefits

- Uniform rotation speeds up to tens of thousands RPM
- No MCU required
- Scalable power stage
- Current monitor allows real time adjustments

Toshiba's unique technology

TC78B009FTG

Suitable for high-velocity impellers and fan applications



Cordless and robot vacuum cleaners

03

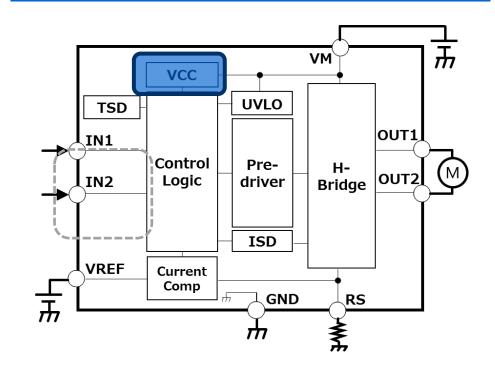
Brushed DC Motor Control

Product highlights

TB67H450FNG / TB67H451FNG

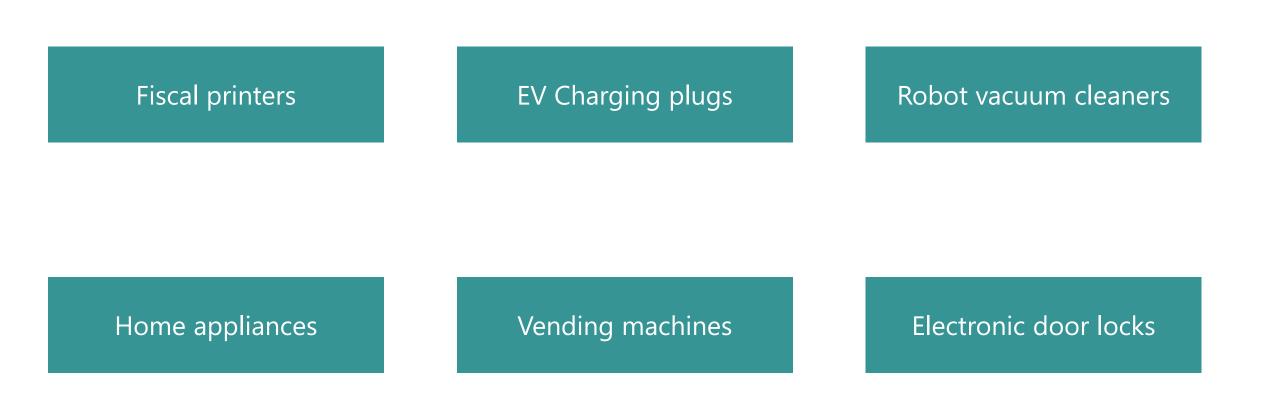
50V, 3.5A 1ch Brushed DC Motor Driver

Features


- Ultra-low standby current of only 1µA
- Automatic standby mode
- Wide operating voltage range from 4.5V to 44V
- Industry standard pin out and package

Benefits

- Reduced energy consumption in standby
- Extended battery lifetime
- Allows multi-product sourcing strategies
- Ideal for USB powered devices



Isolated voltage regulator

TB67H450FNG / TB67H451FNG

Suitable for battery and USB powered applications

TC78H651/651A/653

H-Bridge Brushed DC Motor Driver Series for 1.8V to 6V Operation

Features

- Low operating current of 0.6mA (typ.)
- Complete shut off in standby $\rightarrow 0\mu A$ (typ.)
- Industry standard pin out and package
- 500kHz PWM control and fast output switching

Benefits

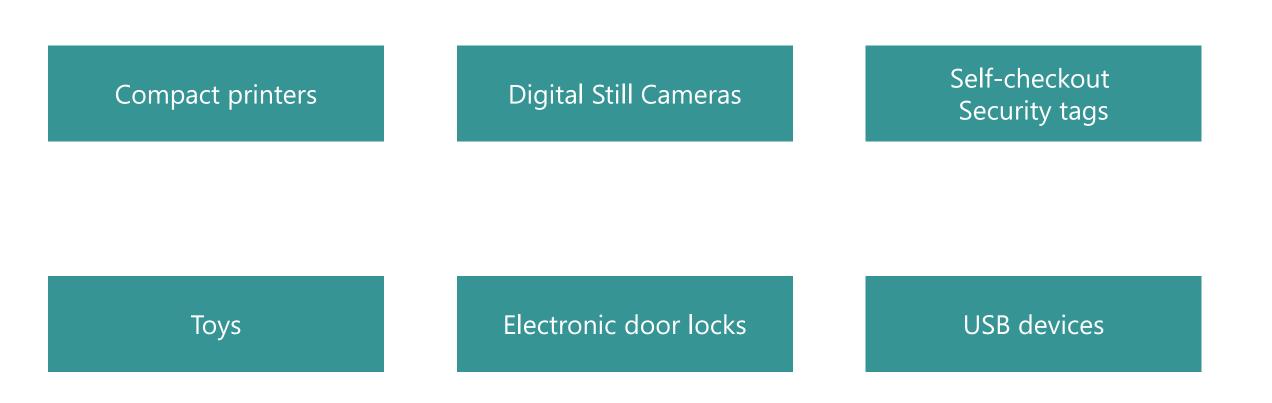
- Extended battery lifetime
- Allows multi-product sourcing strategies
- Enables high rotational speeds

TC78H651FNG TC78H651AFNG

1.6A/2.0A rated 2ch H-Bridge

2 brushed DC motor or 1 stepping motor driver

TC78H653FTG


2A rated 2ch H-Bridge 5A rated 1ch large H-Bridge Using standard Pin out

Toshiba original Pin out

High drive current at low voltage

TC78H651/651A/653

Suitable for battery and USB powered applications

Design Support

Documentation & Application Support

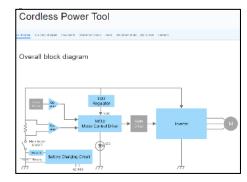
Reference information & Documentation

- Reference designs
- Applications
- FAQ
- Datasheet, Application note and environmental information available on each product web page

Technical application support in China

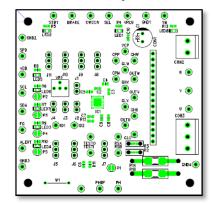

TESH:

Toshiba Devices & Storage (Shanghai) Co.,Ltd MCD FAE support


TESZ:

Toshiba Devices & Storage (Shanghai) Co.,Ltd Shenzhen Branch MCD FAE support

Schematic


Applications

BOM List

T	ISHIE	A				COST Total & Resource Device	
1		-					Service in Taxy 2.1
De Ha	Date do	Our die	Valey	Purchase day	Reministers	Devalution	falling but Name
	845 C		12.15			A STATE OF THE OWNER	
	F13		12.10		-	Contraction of the second seco	
			and the spectrum			contracts to opport parparents	
			nal come			to the with some party party of the	
	P.4		ed ste			Cost and a	
						A read and a second sec	
	10		00.010			Circ roads	
	1 C		1211115			A NUMBER OF STREET	
	F.1.		00.010	-		Cities an Andrea	
18			DATE OF THE OWNER.			1 NO IS NOT	
			aligner of the pro-			a color and dearer	
1.5	P.11		041-010			Concentration	
						a single there	
- 24	P11		00.010			Siz make	
15	N.C.		A PANA			COMPACT AND ADDRESS	
	41		0.430	-		that after service	
1.1	100		14.007			The case of	
	0		11000				
1.0	C1-		1.4 207				
			1.0.00.0			AND PROVED THE	
- 21	0		14.207			Contraction in	
	1.		A REPORT			 No more than 	
22	Ch.		on ord				
28			ALM 202			C no second un	
3	ALC: NO.	1.8	10 h			Constants in succession	
	11110		1111 111			CONTRACTOR OF	
- 21	MICC.		R Mar			Circle MD Trailors	
- 24	1808		10 C mm	-	-	Concillence on the Concelling of the Concelling	
	MAC O					A STATISTICS	
20	1002		CO COMPACT			CONTRACTOR COMPANY	
	Labor.						

PCB Layout

Evaluation Boards

Samples

Available on Mouser web

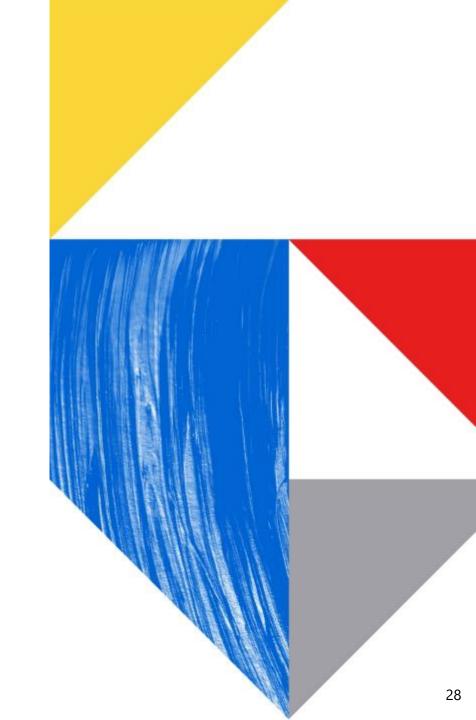
https://www.mouser.cn/Toshiba/Semiconductors/Power-Management-ICs/Motor-Motion-Ignition-Controllers-Drivers/_/N-41dum?P=1z0zkx4

41+ part numbers

Evaluation Boards

Development boards are available in Marutsu, Seeed, MicroE, and Pololu

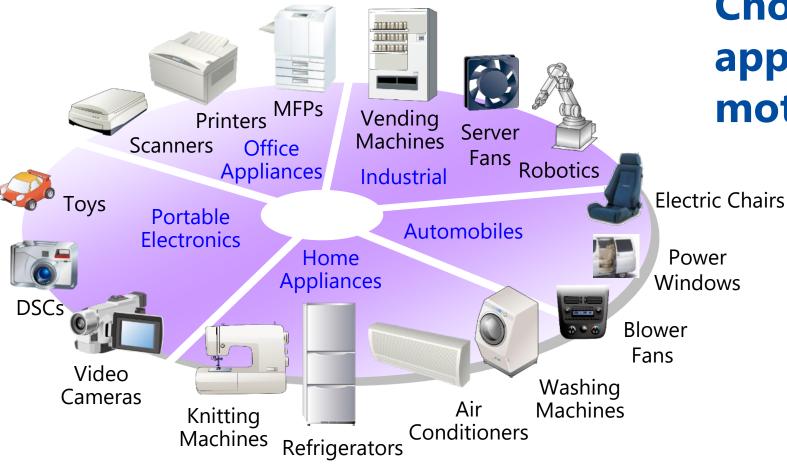
https://www.marutsu.com/search?q=toshiba&search_but ton.x=9&search_button.y=8


https://www.digikey.jp/products/en/development-boardskits-programmers/evaluation-and-demonstration-boardsand-kits/787?k=toshiba

80+ boards are currently available

05

Selection Guide for Motor Drivers


How To Select Your Motor Driver

Selection Flow

1)	2)	3)	4)
Target	Types of	Types of Motor	Requirements
Applications	Motors	Drivers	for the Driver
Home Appliances Office Appliances Industrial etc.	AC Motors DC Motors etc.	Brushed DC Motors Stepping Motors Brushless DC Motors etc.	Voltage Current Package etc.

Selection Guide for Motor Control Drivers

Applications

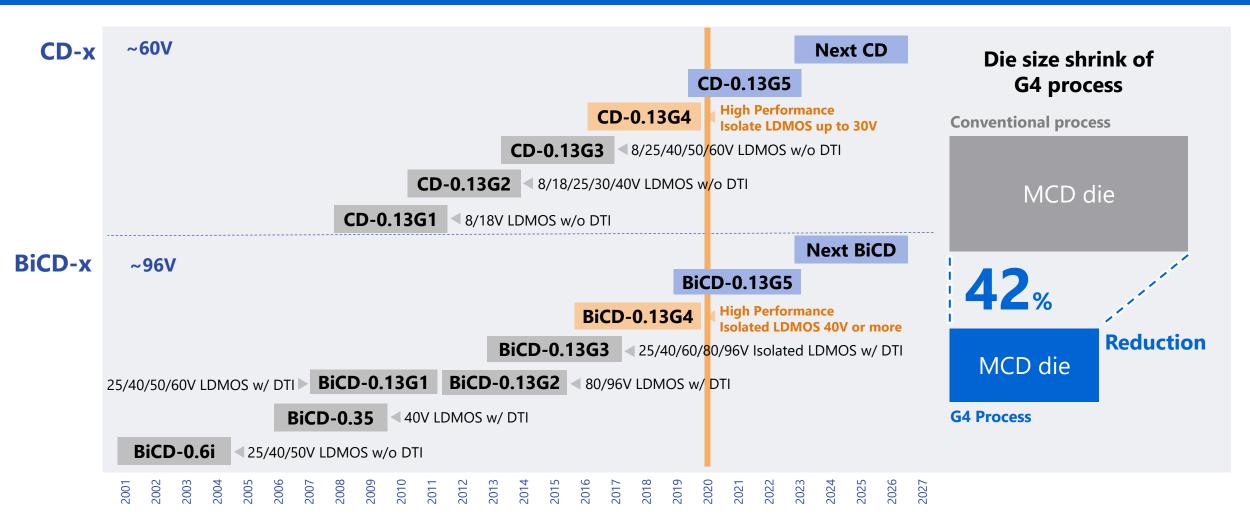
Choose the target application for the motor control driver

Selection Guide for Motor Control Drivers

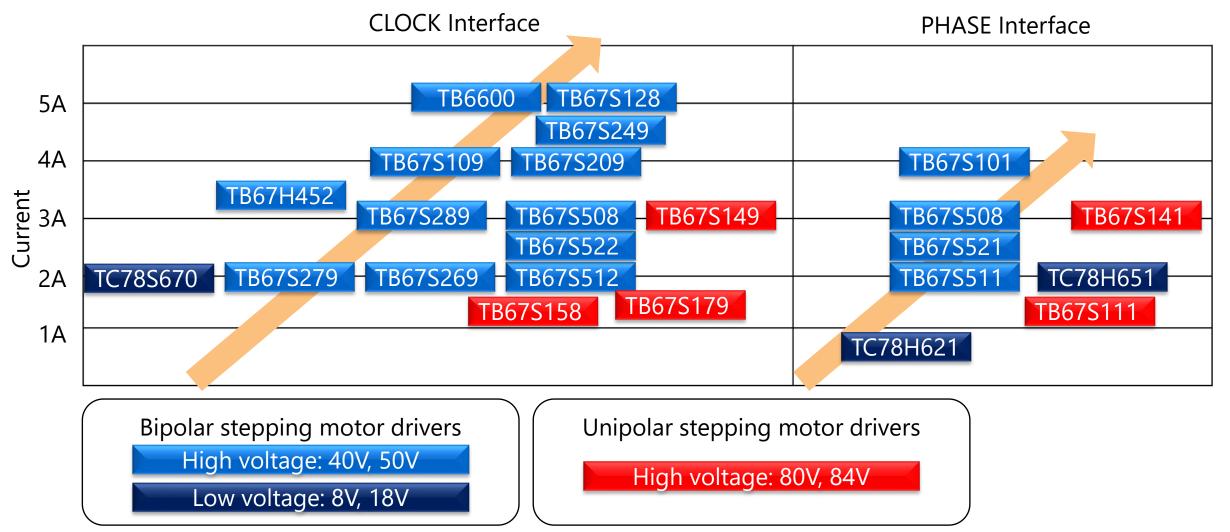
How to narrow down using "keywords".

Brushed DC Motor	Stepping Motor	Brushless DC Motor
Required voltage [V]	Required voltage [V]	Required voltage [V]
(Operational / Maximum)	(Operational / Maximum)	(Operational / Maximum)
Required current [A]	Required current [A]	Required current [A]
(Nominal / Peak)	(Nominal / Maximum)	(Nominal / Peak)
Types of packages	Types of packages	Types of packages
(Insertion / Surface mount)	(Insertion / Surface mount)	(Insertion / Surface mount)
Control Interface	Control Interface	Control Interface
(PWM / Analog control)	(Phase / Clock control)	(PWM / Analog control)
Required H-Bridges	Required Step Resolution 1/1 step to 1/128 steps	Position Detect With hall Sensors / Sensorless
(Single / Multiple)	Required Motor Types Unipolar / Bipolar	Current Control Trapezoidal / Sinusoidal

Using these keywords will make it easier to narrow down the best fit device for the customer.


06

Toshiba's Broad Portfolio and Lineup of Motor Control Drivers


Toshiba's CD and BiCD Process Roadmap

Ultra-low N-ch DMOS RDS(ON) allows high motor voltage and low heat generation

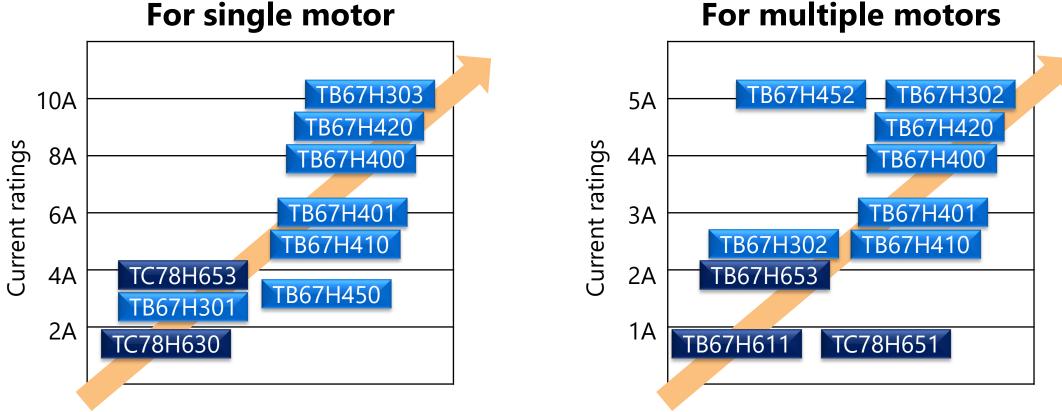
Stepping Motor Driver Product Portfolio

Broad portfolio to cover multiple requirements (voltage, current, and types of motors)

Brushless DC Motor Driver Product Portfolio

Broad portfolio to cover multiple requirements (voltage, current, and types of motors)

		3 Phase Motor		1 Phase Motor
	High voltage (Over100V)	Low voltage (24V / 12V)	Low voltage (24V / 12V)	Low voltage (24V / 12V)
	Brushless	Brushless	Sensor-less	Sensor-less
Controller or Pre-driver	TC78B041/042 TB6634	TB6605 TC78B027	TB6675	TC78B006
Driver	TB67B000	TC78B016 TC78B025	TB6588 TB67B001 TB67B008	TC78B002


Driver

Controller / Pre-driver

Controller-> Requires external gate drivers + FETs Pre-driver-> Requires external FETs Driver-> Fully integrated

Brushed DC Motor Driver Product Portfolio

Broad portfolio to cover multiple requirements (voltage, current, and types of motors)

For multiple motors

Low voltage: 8V, 18V

High voltage: 40V, 50V

Stepping Motor Drivers - CLOCK in Control

*: Under development *: New

	Moto	r Type	Interface	Maxim	um Ratings	nt Cont.		9	Stepp	oing N	1ode			Gain	wer y	Pro	otecti	on		
Part Number	Bipolar	Unipolar	Clock Phase Serial	Voltage [V]	Current [A]	Constant Current Cont.	Full	Half	1/4	1/8	1/32	1/64	1/128	Active Ga Control	Single Power Supply	UVLO (1)	ISD (2)	TSD (3)	Temp. Range TA	Package
TB62211FNG				40	1.0		\bullet									\bullet		\bullet	-20 to +85℃	HTSSOP24
TB62214AFTG/FNG/FG				40	2.0			•								\bullet	\bullet	\bullet	-20 to +85℃	QFN48/HTSSOP48/HSOP28
TB62215AFTG/FNG/FG/HQ				40	3.0											\bullet	\bullet	\bullet	-20 to +85℃	QFN48/HTSSOP48/HSOP28/HZIP25
TB62262FTAG				40	1.5		\bullet									\bullet	\bullet	\bullet	-20 to +85℃	QFN36
TB62262FTG				40	1.8		\bullet	•								\bullet	\bullet	\bullet	-20 to +85℃	QFN48
TB62269FTG/FTAG				40	1.8		\bullet									\bullet	\bullet	\bullet	-20 to +85℃	QFN48/QFN32
TB6560AFTG/FG				40	2.5			\bullet)							\bullet	-30 to +85℃	QFN48/HQFP64
TB6560AHQ				40	3.5		\bullet		-		· · · · ·							\bullet	-30 to +85℃	HZIP25
TB6600FG/HG				50	4.5 / 5.0		\bullet	•)					\bullet	\bullet	\bullet	-30 to +85℃	HQFP64/HZIP25
TB6608FNG				15	0.8		\bullet									\bullet		\bullet	-20 to +85℃	SSOP20
TB6615PG				28	0.4		\bullet												-30 to +85℃	DIP16
TB67S102AFTG/FNG				50	4.0		\bullet									\bullet			-20 to +85℃	QFN48/HTSSOP48
TB67S103AFTG				50	4.0											\bullet	\bullet	\bullet	-20 to +85°C	QFN48
TB67S109AFTG/FNG				50	4.0		\bullet									\bullet	\bullet	\bullet	-20 to +85°C	QFN48/HTSSOP48
TB67S128FTG *				50	5.0		\bullet									\bullet	\bullet	\bullet	-40 to +85°C	QFN48
TB67S142FTG/NG/HG				84	3.0		\bullet									\bullet	\bullet	\bullet	-20 to +85℃	QFN48/SDIP24/HZIP25
TB67S149FTG/FG/HG				84	3.0											\bullet	\bullet	\bullet	-20 to +85℃	QFN48/HSSOP28/HZIP25
TB67S158FTG				80	3.0 × 1ch											\bullet			-20 to +85°C	QFN48
TB67S158FTG			$\bullet \bullet \bullet$	80	1.5 × 2ch														-20 to +85°C	QFN48
TB67S158NG				80	1.5 x 2ch			•											-20 to +85°C	SDIP24
TB67S179FTG				80	1.5			•									\bullet		-20 to +85°C	QFN48
TB67S215FTAG				40	2.5		\bullet	•									\bullet		-20 to +85°C	QFN36
TB67S209FTG				50	4.0		\bullet	•									\bullet		-20 to +85°C	QFN48
TB67S249FTG				50	4.5													\bullet	-20 to +85°C	QFN48
TB67S269FTG				50	2.0			•											-20 to +85℃	QFN48
TB67S279FTG				50	2.0			•											-20 to +85℃	QFN48
TB67S289FTG				50	3.0			•											-20 to +85℃	QFN48
TB67S508FTG			• •	40	3.0			•											-20 to +85℃	QFN36
TB67S512FTAG				40	2.0	٠		•									\bullet		-20 to +85℃	QFN36
TB67S522FTAG				40	2.8			•								\bullet			-20 to +85°C	QFN36
TC78S122FTG/FNG			•	40	2.0 × 2ch			•								\bullet			-20 to +85℃	QFN48/HTSSOP48
TB67H452FTG			•	40	3.5 × 2ch			•								\bullet	\bullet		-20 to +85℃	QFN48
TC78S600FTG/FNG			•	18	1.0	۲											•	•	-20 to +85℃	QFN24/SSOP20
TB6613FTG			• •	6	0.8	•		•											-20 to +85℃	QON44
TC78S670FTG **			•	18	2.0														-40 to +85°C	QFN16

Note (1): Under voltage lockout (2): Overcurrent detection (3): Thermal shutdown

Stepping Motor Drivers - PHASE in Control

*: Under development *: New

	Moto	or Type	r Type Interface			Maximum Ratings					Ste	epping	g Mo	de			. <u>⊆</u>	ver	Pro	otect	ion		
Part Number	Bipolar	Unipolar	Clock	Phase	Serial	Voltage [V]	Current [A]	Constant Current Cont.	Full	Half	1/4	1/8	1/16	1/32	1/64	1/128	Active Gain Control	Single Power Supply	UVLO (1)	ISD (2)	TSD (3)	Temp. Range TA	Package
TB62208FTG/FNG/FG		1				40	1.8							ĺ								-20 to +85℃	QFN48/HTSSOP48/HSOP28
TB62210FNG						40	1.0															-20 to +85°C	HTSSOP24
TB62212FTAG/FNG	•					40	1.5×2ch	•	•	•									•			-40 to +85°C	QFN48/HTSSOP48
TB62213AFTG/FNG/FG/HQ						40	3.0	•			•											-20 to +85°C	QFN48/HTSSOP48/HSOP28/HZIP25
TB62218AFTG/FNG/FG	•					40	2.0													•		-20 to +85℃	QFN48/HTSSOP48/HSOP28
TB62261FTAG	•					40	1.5	•			•								•			-20 to +85℃	QFN36
TB62261FTG						40	1.8															-20 to +85°C	QFN48
TB6562ANG/AFG						40	1.5															-20 to +85°C	SDIP24/SSOP30
TB6674FAG						24	0.2															-30 to +85°C	SSOP16
TB6674PG/FG						24	0.4															-30 to +85°C	DIP16/HSOP16
TB67S101AFTG/FNG/NG						50	4.0															-20 to +85°C	QFN48/HTSSOP48/SDIP24
TB67S105FTG					\bullet	50	3.0															-20 to +85°C	QFN48
TB67S111PG *						80	1.5															-20 to +85°C	DIP16
TB67S141FTG/NG/HG				\bullet		84	3.0		\bullet											•		-20 to +85°C	QFN48/SDIP24/HZIP25
TB67S145FTG					•	84	3.0															-20 to +85°C	QFN48
TB67S158NG				\bullet	\bullet	80	1.5×2ch													•		-20 to +85°C	SDIP24
TB67S213FTAG						40	2.5															-20 to +85°C	QFN36
TB67S261FTG						50	2.0															-20 to +85°C	QFN48
TB67S265FTG					\bullet	50	2.0		\bullet											•	\bullet	-20 to +85°C	QFN48
TB67S285FTG *					•	50	3.0															-20 to +85°C	QFN48
TB67S511FTAG				\bullet		40	2.0		\bullet											•		-20 to +85°C	QFN36
TB67S521FTAG				\bullet		40	2.8		\bullet											•	\bullet	-20 to +85°C	QFN36
TC78S121FTG/FNG						40	2.0×2ch															-20 to +85°C	QFN48/HTSSOP48
TC78H611FNG *				\bullet		18	1.1															-30 to +85℃	TSSOP16
TC78H621FNG *						18	1.1															-30 to +85℃	TSSOP16
TC78H651AFNG *						8	2.0															-40 to +105°C	TSSOP16
TC78H653FTG *						8	2.0		•									•		•		-40 to +105°C	QFN16

Note (1): Under voltage lockout (2): Overcurrent detection (3): Thermal shutdown

Brushed DC Motor Drivers

*: Under development *: New O: Latch \diamond : Auto recovery

		Maximu	m Ratings	С	Ê	Σ	ver		rotectio	n		
Part Number	Large Mode	Voltage [V]	Current [A]	Output Ron	Circuits (Ch)	C.C. PWM	Single Powe Supply	UVLO (1)	ISD (2)	TSD (3)	Temp. Range TA	Package
TB62212FTAG/FNG	NG • 40		2.0 / 4.0(4)	2.20 / 1.10(4)	4 / 2(4)		•		0	0	-40 to +85°C	QFN48/HTSSOP48
TB62216FTG/FNG/FG		40	2.5	1.00	2	•	•	•	0	0	-20 to +85°C	QFN48/HTSSOP48/HSOP28
TB6552FTG/FNG		15	1.0	1.50	2					\$	-20 to +85°C	QFN16/SSOP16
TB6559FG		50	2.5	1.30	1	•	•		\$	\$	-30 to +85°C	HSOP16
TB6561NG/FG		40	1.5	1.50	2		•		\$	\$	-20 to +85°C	SDIP24/SSOP30
TB6568KQ		50	3.0	0.55	1		•	•	0	0	-40 to +85°C	HSIP7
TB6569FG/FTG		50	4.5	0.55	1	•	•	•	0	0	-40 to +85°C	HSOP16/QFN32
TB6612FNG		15	3.2	0.50	2			•		\$	-20 to +85°C	SSOP24
TB6613FTG		6	0.8	1.50	8	•		•		\$	-20 to +85℃	QON44
TB6640FTG/AFTG		40	3.0	1.00	1	•		•	0/\$	0/\$	-40 to +85°C	QFN48
TB6641FG/FTG		50	4.5	0.55	1	•	•	•	0	0	-40 to +85°C	HSOP16/QFN32
TB6642FG		50	4.5	0.55	1		•	•	0/\$	0/\$	-40 to +85°C	HSOP16
TB6642FTG		50	4.5	0.55	1		•	•	0/\$	0/\$	-40 to +85°C	QFN32
TB6643KQ		50	4.5	0.55	1		•	•	0	0	-40 to +85°C	HSIP7
TB67H301FTG		40	3.0	1.00	1	•		•	0/\$	0/\$	-40 to +85°C	QFN24
TB67H302HG		50	5.0	0.40	2	•	•	•	0	0	-30 to +85°C	HZIP25
ТВ67Н303НG		50	10.0	0.20	1	•	•	•	0	0	-30 to +85°C	HZIP25
TB67H400AFTG/FNG/HG/NG	•	50	4.0 / 8.0(4)	0.49 / 0.25(4)	2 / 1(4)	•	•	•	0	0	-20 to +85°C	QFN48/HTSSOP48/HZIP25/SDIP24
TB67H410FTG/NG	•	50	2.5 / 5.0(4)	0.80 / 0.40(4)	2 / 1(4)	•	•	•	0	0	-20 to +85°C	QFN48/SDIP24
TB67H420FTG	•	50	4.5 / 9.0(4)	0.33 / 0.17(4)	2 / 1(4)	•	•	•	0	0	-20 to +85°C	QFN48
TB67H452FTG	•	40	3.5 / 5.0(4)	0.60 / 0.30 (4)	4 / 2(4)	•	•	•	0	0	-20 to +85°C	QFN48
TC78H600FTG/FNG		18	1.0	1.20	2	•		•	0	\$	-20 to +85°C	QFN24/SSOP20
TC78H611FNG		18	1.1	0.80	2			•	0	\$	-30 to +85°C	TSSOP16
TC78H621FNG		18	1.1	0.80	2			•	0	\$	-30 to +85℃	TSSOP16
TC78H630FNG		18	2.1	0.40	1			•	0	\$	-30 to +85℃	TSSOP16
TC78H651AFNG *		8	2.0	0.22	2		•	•	0	\$	-40 to +105°C	TSSOP16
TC78H653FTG *	•	8	2.0 / 4.0(4)	0.22 / 0.11(4)	2 / 1(4)		•	•	0	\$	-40 to +105°C	QFN16
TC78S121FTG/FNG	•	40	3.5 / 5.0(1)	0.60 / 0.30 (4)	4 / 2(4)	•	•	•	0	0	-20 to +85℃	QFN48/HTSSOP48
TC78S122FTG/FNG	•	40	3.5 / 5.0(1)	0.60 / 0.30 (4)	4 / 2(4)	•	•	•	0	0	-20 to +85℃	QFN48/HTSSOP48
TB67H401FTG *	•	50	3.0 / 6.0(4)	0.49 / 0.25(4)	2 / 1(4)	•	•	•	0	0	-20 to +85℃	QFN48
TB67H450FNG **		50	3.5	0.6	1		•	•	0	\$	-40 to +85℃	SOP8

Note (1): Under voltage lockout (2): Overcurrent detection (3): Thermal shutdown (4): Large mode

Brushless DC Motor Drivers and Controllers

*: Under development *: New

	Pha	ases	Ē	л.		Maximun	n Ratings	SS	or ber)	Comm	utation	Le	ad Ang	le Conti	rol	do			
Part Number	3-Phase	1-Phase	Controller	Pre Driver	Driver	Voltage [V]	Current [A]	Sensor less	Hall Sensor Inputs (Numbe	Square	Sine	External Input	Auto (current FB)	Auto (rpm FB)	Auto (InPAC)	Closed Loop	Temp. Range TA	Package	
TB6551FAG						12	0.002		3								-30 to +115℃	SSOP24	
TB6556FG						12	0.002		3								-30 to +115℃	SSOP30	
TB6575FNG						5.5	0.020										-30 to +105°C	SSOP24	
TB6584FNG/AFNG						18	0.002		3								-30 to +115℃	SSOP30	
TB6585FG/AFTG						45	1.8		3								-30 to +85℃	HSOP36/QFN48	
TB6586FG/AFG/BFG						18	0.002		3			\bullet					-30 to +115℃	SSOP24	
TB6588FG						50	2.5										-30 to +105℃	HSOP36	
TB6603FTG						30	0.02		3								-30 to +85℃	QFN36	
TB6604FTG				\bullet		30	0.02		3								-30 to +85℃	QFN48	
TB6605FTG						30	0.02		3								-30 to +85℃	QFN36	
TC78B004FTG *						31	0.1		3								-30 to +85°C	QFN40	
TB6631FNG						18	0.002		3								-30 to +115℃	SSOP30	
TB6633FNG/AFNG						25	1.0										-30 to +105°C	SSOP24	
TB6634FNG						18	0.002		3								-30 to +115℃	SSOP30	
TB67B000HG						500	2.0		3	•							-30 to +115℃	HDIP30	
TB67B000FG *					۲	500	2.0		3	•							-30 to +115℃	HSSOP34	
TB67B001FTG/AFTG					۲	25	3.0			•							-40 to +105℃	QFN36	
TB67B008FNG/AFNG/BFNG/CFNG						25	3.0										-40 to +105℃	SSOP24	
TB67B008FTG/AFTG/BFTG/CFTG						25	3.0										-40 to +105℃	QFN24	
TB67B054FTG *						18	0.002		3								-30 to +115℃	QFN32	
TB67Z800FTG						25	3.0										-40 to +105℃	QFN36	
TC78B002FTG/FNG						18	1.5		3								-40 to +105℃	QFN16/SSOP16	
TC78B006FNG/AFNG/BFNG/CFNG						40	0.02		1								-40 to +105℃	SSOP16	
TC78B006FTG/AFTG/BFTG/CFTG						40	0.02		1								-40 to +105℃	QFN16	
TC78B015FTG *						25	3.0		1								-40 to +85℃	QFN36	
TC78B015AFTG *						36	3.0		1	•							-40 to +85°C	QFN36	
TC78B016FTG						40	3.0		3								-40 to +105°C	QFN36	
TC78B015BFTG/CFTG **					٠	36	3.0		3	•							-40 to +85°C	QFN36	
TC78B025FTG *					•	18	4.0		1	•							-40 to +105°C	QFN24	
TC78B041FNG *			٠			18	0.002		3								-40 to +115°C	SSOP30	
TC78B042FTG *	٠		۲			18	0.002		3								-40 to +115°C	QFN32	
TC78B000AHG **	٠				٠	600	2.0		3								-30 to +115°C	HDIP30	
TC78B000AFG **					۲	600	2.0		3	•							-30 to +115°C	HSSOP34	
TC78B027FTG **						18	0.2		1								-40 to +105℃	QFN24	

Thank you.

41

TOSHIBA

*Company names, product names, and service names may be trademarks of their respective companies. *Information in this document, including product prices and specifications, content of services and contact information, is current on the date of the announcement but is subject to change without prior notice.